Technical data sheet

FOR THE ROTARY ACTUATOR

Type: HSH 1 SG Art. no.: 4816900

- Valve connection plates with differnt hole patterns

- Control valves and rotary encoders of all well-known manufacturers
- Pulsation accumulators, hubs and shrink discs or clamping sets

- Centre hole in the drive shaft end DIN 332-2 - D M 8

Rotary angle limitation An external rotary angle limitation is recommended!

max. nominal pressure	p _{N max}	bar	280		1)
min. minimum pressure	p_{Mmin}	bar	50	Required for a proper functioning of the load-free drive.	
max. starting pressure without load	p_{Stmax}	bar	4.2	at an output pressure of p = 1 bar	
specific torque	M_{sp}	Nm/bar	1.02	torque constant	2)
theoretical torque	$M_{ th}$	Nm	286	at ∆p=p _{N max}	2)
mechanical efficiency ≈	$\eta_{\text{ mec}}$	-	0.985	at $\Delta p = p_{N max}$ and $\omega = \omega_{max}$	3)
effective torque	$M_{ eff}$	Nm	281	at $\Delta p = p_{N max}$ and $\omega = \omega_{max}$	3)
number of working chambers	Z	-	4		
nominal angle of rotary	φи	grad	125	The internal stop must not be approached!	2)
max. operating angle of rotary	Фатах	grad	120	This corresponds to a maximum amplitude of \pm 60°.	
maximum radial force	F_{rmax}	N	2 000	force acting centered on the journal of the drive shaft	4)
maximum axial force	F_{axmax}	N	3 000	force acting centrically on the journal of the drive shaft	4)
weight ≈	m	kg	14.5	± 10%, incl. oil filling	
mass moment of inertia of drive shaft	J_{W0}	kgcm²	3.50	± 5%, without other attachments such as hub, coupling, rotation encoder, etc.	
max. angular speed	ω max	rad/s	19.0	This corresponds to 1089 deg/s or an equivalent rotational speed of n= 181 min	n ⁻¹ .
					1)
specific displacement	V _{sp}	cm ³ /°	0.18	This results in a theoretical operating volume of V_A = 21.4 cm ³ .	2)
theoretical volume flow rate required	$Q_{ th}$	l/min	11.6	at $\omega = \omega_{\text{max}}$	2)
max. total leakage volume flow rate	$Q_{L\text{max}}$	l/min	9.00	at Δp = p_{Nmax} and ν =50 mm 2 /s (internal leakage + leakage at port L)	3)
effective required volume flow rate	$Q_{ {\sf eff}}$	l/min	20.6	at $\Delta p = p_{N \text{ max}}$, $\omega = \omega_{\text{max}}$ and $v = 50 \text{ mm}^2/\text{s}$	3)
leakage fluid pressure	$p_{\text{L}\text{max}}$	bar	0.2		
permissible pressure fluid				HLP mineral oils according to DIN 51524 T2	
temperature range of pressure fluid	θöι	°C	-20 – +80	The viscosity range set in operation is to be observed.	1)
range of kinematic viscosity	ν	mm²/s	20 – 150	short-term, the optimum operating viscosity range is 40 – 50 mm ² /s	
cleanliness class of pressure fluid				Max. permissible degree of pollution according to ISO 4406 class 17/15/12.	
range of ambient temperature	θ	°C	0-+60		
design of component surfaces				metallic bright and wetted with anticorrosion agents	

© 2024 Hense Systemtechnik GmbH & Co. KG

Subject to technical modifications and error!

¹⁾ The simultaneous occurrence of two or more maximum values of temperature, pressure and angular speed requires the written consent of the manufacturer!

²) Theoretically determined value without manufacturing tolerances and if so an efficiency.

 $^{^{\}rm 3})$ Median recorded in test series; an inferential variance is possible.

 $^{^4}$) The data of maximum forces are valid only when the hydrostatic bearing is in operation with p N max!