Technical data sheet

FOR THE ROTARY ACTUATOR

Type: HSH 128 SG Art. no.: 4816940

Model Vane-type rotary actuator

In principle the actuation has a pressure- and viscosity-dependent internal leak volume flow rate. For example, if an external torque affect the rotary actuator shaft in an idle mode, the rotary actuator shaft shifts slowly from its angle position!

Series HSH: Rotary actuator without an end position damping, without a internal rotating angle limitation and

with a radial and axial hydrostatic supported shaft.

The rotary actuator can be equipped with components are adapted to the specific application,

The rotary actuator can be equipped with components are adapted to the specific application, such as:

- Valve connection plates with differnt hole patterns
- Control valves and rotary encoders of all well-known manufacturers
- Pulsation accumulators, hubs and shrink discs or clamping sets

Mounting style

- Rotary actuator housing single-sided face mounting with thread according to DIN 13-1 - M 24

single-sided flange mounting with through holes d = 26

Strength class of the fastening screws \geq 10.9

- Drive shaft end cylindrical shaft end for shrink disc or clamping set with d = 140 g6

- Centre hole in the drive shaft end DIN 332-2 - D M 30

A and B with d=28 in the flange surface of the rear motor cover and L G1 radial in the rear motor cover arbitrary; Depending on the position of installation and case of application a load may cause running ahead the rotary actuator drive shaft. In such a case, appropriate countermeasures must be taken!

Installation instructions see operating instructions

Rotary angle limitation An external rotary angle limitation is recommended!

max. nominal pressure	$p_{N\text{max}}$	bar	280		1)
min. minimum pressure	$p_{\text{M}\text{min}}$	bar	50	Required for a proper functioning of the load-free drive.	
max. starting pressure without load	p st max	bar	4.2	at an output pressure of p = 1 bar	
specific torque	M_{sp}	Nm/bar	130.99	torque constant	2)
theoretical torque	$M_{ th}$	Nm	36 677	at ∆p=p _{N max}	2)
mechanical efficiency ≈	η_{mec}	-	0.985	at $\Delta p = p_{N max}$ and $\omega = \omega_{max}$	3)
effective torque	$M_{ eff}$	Nm	36 127	at $\Delta p = p_{N \text{ max}}$ and $\omega = \omega_{\text{ max}}$	3)
number of working chambers	Z	-	4		
nominal angle of rotary	φи	grad	125	The internal stop must not be approached!	2)
max. operating angle of rotary	Фатах	grad	120	This corresponds to a maximum amplitude of \pm 60°.	
maximum radial force	F_{rmax}	N	45 000	force acting centered on the journal of the drive shaft	4)
maximum axial force	F_{axmax}	N	25 000	force acting centrically on the journal of the drive shaft	4)
weight ≈	m	kg	510.0	± 10%, incl. oil filling	
mass moment of inertia of drive shaft	J_{W0}	kgdm²	59.70	$\pm5\%,$ without other attachments such as hub, coupling, rotation encoder, etc.	
max. angular speed	ω_{max}	rad/s	6.0	This corresponds to 344 deg/s or an equivalent rotational speed of n= 57 min ⁻¹ .	1)
specific displacement	V sp	cm³/°	22.86	This results in a theoretical operating volume of V_A = 2 743.4 cm ³ .	2)
theoretical volume flow rate required	$Q_{ th}$	l/min	471.9	at $\omega = \omega_{\text{max}}$	2)
max. total leakage volume flow rate	$Q_{L\text{max}}$	l/min	30.00	at $\Delta p = p_{N max}$ and $\nu = 50 \text{ mm}^2/\text{s}$ (internal leakage + leakage at port L)	3)
effective required volume flow rate	$Q_{ {\text{eff}}}$	l/min	501.9	at $\Delta p = p_{N max}$, $\omega = \omega_{max}$ and $\nu = 50 \text{ mm}^2/\text{s}$	3)
leakage fluid pressure	p_{Lmax}	bar	0.7		
permissible pressure fluid				HLP mineral oils according to DIN 51524 T2	
temperature range of pressure fluid	9 öι	°C	-20 – +80	The viscosity range set in operation is to be observed.	1)
range of kinematic viscosity	ν	mm²/s	20 – 150	short-term, the optimum operating viscosity range is 40 – 50 mm²/s	
cleanliness class of pressure fluid				Max. permissible degree of pollution according to ISO 4406 class 17/15/12.	
range of ambient temperature	θ	°C	0-+60		
design of component surfaces				metallic bright and wetted with anticorrosion agents	

Subject to technical modifications and error!

© 2024 Hense Systemtechnik GmbH & Co. KG

¹⁾ The simultaneous occurrence of two or more maximum values of temperature, pressure and angular speed requires the written consent of the manufacturer!

 $^{^{2}}$) Theoretically determined value without manufacturing tolerances and if so an efficiency.

 $^{^{\}rm 3})$ Median recorded in test series; an inferential variance is possible.

 $^{^4}$) The data of maximum forces are valid only when the hydrostatic bearing is in operation with p N max!